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Abstract—There is an urgent demand on efficient method-
ologies to model and analyze the end-to-end delay distribution
of networked systems since end-to-end delay beyond deadline
may result in catastrophic consequences. Traditional methods
based on time domain analysis, however, are not efficient as the
network scale and the complexity increase. In this paper, we
propose a novel theoretical framework to analyze the end-to-
end delay distribution of large-scale networked systems from the
frequency domain. We use a signal flow graph to model the delay
distributions of a networked system and prove that the end-to-end
delay distribution is indeed the inverse laplace transform of the
transfer function of the signal flow graph. Two efficient methods,
Cramers rule based method and Mason gain rule based method,
are adopted to obtain the transfer function. Further, we propose
an efficient method using the dominant poles of the transfer
function to improve the end-to-end delay distribution. Theoretical
analysis and extensive evaluations show the effectiveness of the
proposed approach.

I. INTRODUCTION

Communication reliability is an essential requirement for
the dependability of mission-critical systems. For example, a
single link failure, or communication delay of feedback signals
may destroy the nuclear plant and kill hundreds of people.
The end-to-end delay distribution can be used as a metric to
measure communication reliability [1]. Traditional methods of
end-to-end delay analysis based on time domain analysis are
not convenient to be used here because they calculate the end-
to-end delay distribution by convoluting the delay distributions
of individual nodes and links, and the computational cost is
extremely high when the network is complicated and its scale
is large. In addition, in most situations, traditional methods
can not get closed-form solutions. Moreover, previous work
rarely provide methods for us to improve the end-to-end delay
distribution efficiently.

In this paper, we propose a new theoretic framework for
communication reliability (or end-to-end delay distribution)
analysis and enhancement of networked systems through
frequency control theory. We use a signal flow graph to
model the delay distributions of a networked system, which
does not depend on any certain network structure. The end-
to-end delay distribution in the time domain is indeed the
inverse laplace transform of the transfer function of the signal
flow graph. Two methods, Cramer’s rule based method and
Mason Gain Rule based method, are adopted to efficiently
obtain the transfer function. By analyzing the time response
of the transfer function, we can obtain the end-to-end delay

TABLE I
PARAMETERS OF THE EXAMPLE NETWORKED SYSTEM

Links Delay Distributions Selected Probability
e(1, 2) D(1, 2) = 9

s+9
p(1, 2) = 0.7

e(1, 4) D(1, 4) = 7
s+7

p(1, 4) = 0.3

e(2, 3) D(2, 3) = 5
s+5

p(2, 3) = 1

e(3, 6) D(3, 6) = 1
s+1

p(3, 6) = 1

e(4, 3) D(4, 3) = 4
s+4

p(4, 3) = 0.2

e(4, 5) D(4, 5) = 7
s+7

p(4, 5) = 0.8

e(5, 2) D(5, 2) = 0.5
s+0.5

p(5, 2) = 0.3

e(5, 4) D(5, 4) = 5
s+5

p(5, 4) = 0.1

e(5, 6) D(5, 6) = 8
s+8

p(5, 6) = 0.6

distribution. Lastly, dominant pole and its related theory are
introduced to figure out the dominant links (or bottleneck
links). By improving the delay distribution of dominant link,
the end-to-end delay distribution of the networked systems can
be efficiently improved.

II. SYSTEM MODELING

We use signal flow graph [2] to model the delay distributions
of a networked system. For example, Figure 1 shows an
example signal flow graph model corresponding to delay of
a networked system. The parameters of the example system
are listed in Table I.
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(5,2) (5,2)sp D

Fig. 1. An example signal flow graph corresponding to delay of a networked
system.

The transfer function of the signal flow graph G is defined
as Ts. We prove that: The end-to-end delay distribution of
a system is equal to the inverse laplace transform of the
transfer function of its corresponding signal flow graph G.
That is, de2e = L−1[Ts] Therefore, we convert the end-to-
end delay distribution calculation problem into the problem
of obtaining the transfer function of the corresponding signal
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Fig. 2. Probability density function and cumulative distribution function of
e2e delay.

flow graph. Further, we have: The impulse response of the
transfer function equals the probability density function of the
end-to-end delay distribution, and the step response equals
the cumulative distribution function of the end-to-end delay
distribution.

III. DELAY DISTRIBUTION ANALYSIS

Cramer’s Rule based method and Mason Gain Rule based
method are widely used in control theory [2] to calculate the
system’s transfer function. We take the system in Figure 1 as
an example. The system transfer function can be calculated by
either of the two methods, which is:

Ts =
N(s)

D(s)
, (1)

where

N(s) =89.628(s+ 8.958)(s+ 3.782)(s+ 3.515)(s+ 0.5522)

(s+ 5.1701 + 0.8974i)(s+ 5.1701− 0.8974i), (2)
D(s) =(s+ 9)(s+ 8)(s+ 7.949)(s+ 7)(s+ 5)(s+ 4.051)

(s+ 4)(s+ 1)(s+ 0.5). (3)

Figure 2 shows the impulse response and the step response
of our example system in Figure 1. The impulse response curve
describes the relative likelihood for message delivered at a
given time. It will move to the left when the mean end-to-end
delay is shorter, and be much sharper when jitter (or delay
variation) is smaller. We find that the end-to-end delay mainly
occurs between 0 and 2 seconds. The probability of the end-
to-end delay larger than 5 seconds is very small.

IV. END-TO-END DELAY DISTRIBUTION IMPROVEMENT

For the system transfer function Ts, the zeros of this
function, s = zh, are those values of s for which Ts(zh) = 0.
The poles of this function, s = pk, are those values of s
for which |Ts(bk)| = ∞. There exists dominant poles [2]
which determine the system time response (i.e., end-to-end
delay distribution). The dominant poles are usually close to
the imaginary axis, while the non-dominant poles are usually
far away from the left of the dominant poles or be near zero
when not far to the left of the dominant poles. Since the
system is composed by links, the poles of the system depend
on the delay distributions of individual links. Thus, there exist
some links named dominant links in this paper which decide

the dominant poles of the system. By improving the delay
distribution of dominant link, the end-to-end delay distribution
of the networked systems can be efficiently improved.

Take the networked system shown in Figure 1 as an ex-
ample. We find that (−1, 0) is the dominant pole of Ts. The
reasons are: Firstly, although the pole (−0.5, 0) is not to the
left of pole (−1, 0), there exists a zero (−0.5522, 0) close
to it; Secondly, the other poles are far to the left of (−1, 0).
From Table I, we find that the transfer function of link e(3, 6)
is T (3, 6) = D(3, 6)p(3, 6) = 1

s+1 , so its pole is (−1, 0)
which is the same as the dominant pole of Ts. Thus, we judge
that link e(3, 6) is the dominant link of the networked system.
Thus, by improving e(3, 6), we can improve the the end-to-end
delay significantly.

In order to evaluate it, we improve e(3, 6) and e(5, 2) (the
worst link) to 2

s+2 respectively and get the corresponding the
end-to-end delay distribution as shown in Figure 3. Obviously,
when we improve e(3, 6), probability density function curve
is sharper, and cumulative distribution function curve is faster.
However, when we improve e(5, 2), probability density func-
tion curve and cumulative distribution function curve are rarely
changed. We also improve the other links respectively, and the
result (not plotted) is that the end-to-end delay distribution is
rarely improved in each situation.
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Fig. 3. The end-to-end delay of the example system after improve some
links.
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